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Natural convection in a saturated horizontal porous layer heated from below and 
cooled at the top with a constant flux is studied both analytically and numerically. 
Linear stability analysis indicates that unicellular recirculation remains a stable mode 
of flow as the aspect ratio (A) of the layer is increased, in contrast to the situation for 
an isothermally heated and cooled layer. An analytical solution is presented for fully 
developed counterflow in the infinite-aspect-ratio limit; this flow is found to be linearly 
stable to transverse disturbances for Rayleigh number (Ra) as high as 506, at which 
point a Hopf bifurcation sets in; however, further analysis indicates that an exchange 
of stability due to longitudinal disturbances will occur much sooner at Ra x 3 11.53. 
The velocity and temperature profiles of the counterflow solution, whilst not strictly 
speaking valid in the extreme end regions of the layer, otherwise agree very well with 
full numerical computations conducted for the ranges 25 < Ra < 1050, 2 < A < 10. 
However, for sufficiently high Rayleigh number (Ra between 630 and 650 for A = 8 
and Ra between 730 and 750 for A = 4, for example), the computations indicate 
transition from steady unicellular to oscillatory flow, in line with the Hopf bifurcation 
predicted by the linear stability analysis for infinite aspect ratio. 

1. Introduction 
Convection in a two-dimensional rectangular fluid-saturated porous medium heated 

from below may take various flow patterns depending on the imposed thermal 
boundary conditions. For conventional boundary conditions, that is isothermal 
horizontal and adiabatic side walls and commonly known as Lapwood convection, it 
has been established that, in a domain of unit aspect ratio, a single-cell solution 
undergoes a series of bifurcations as the Rayleigh number is increased. A Hopf 
bifurcation has been observed for two-dimensional single-cell convection by, for 
instance, Horne & O'Sullivan (1974), Caltagirone (1975), Schubert & Straus (1982) and 
Gary & Kassoy (1981); the definitive value of the critical Rayleigh number for a 
square cavity, however, has been determined recently as Ra = 390 (Kimura, Schubert 
& Straus 1986, 1987; Aidun & Steen 1987). A thorough picture of the bifurcation 
process for multicellular flows within two-dimensional cavities, involving a detailed 
account of the dependency on cavity aspect ratio, was presented by Riley & Winters 
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(1989, 1991); in particular, their results indicate that single-cell flow is the leading 
primary solution when the aspect ratio is less than d 2 ,  with multicellular flow being 
the preferred mode for aspect ratios greater than this value. 

Extensions of the problem to three dimensions, assuming the four sidewalls to be 
adiabatic, have been made by Schubert & Strauss (1979), Steen (1983) and Kimura et 
al. (1989). This adiabatic condition, while being one of the simplest, may not, in many 
practical situations, be appropriate : for example, in the modelling of convective heat 
flow within a fault zone in the Earth’s crust, where the heat exchange through the 
vertical confining boundaries cannot be neglected. The sidewall heat loss on the 
broader sides and its influence on the onset of convection was first studied by Lowell 
& Shyu (1978) and Murphy (1979); their results indicate that, when sidewall heat loss 
is permitted, the critical Rayleigh number for the onset of convection becomes 
significantly greater than 4n2. More complete analyses have been presented in a series 
of papers by Kassoy & Cotte (1985), Weidman & Kassoy (1986) and Wang, Kassoy 
& Weidman (1987), where the critical Rayleigh number and the modal configuration 
for convection were found to be extremely sensitive to the sidewall thermal conditions. 
Supercritical states for this problem have yet to be investigated, however. 

As far as the heating condition on the horizontal wall is concerned, on the other 
hand, one simple alternative to constant temperature would be a condition of constant 
flux. This condition, although it seems only realizable by means of a carefully arranged 
experiment, may be readily obtained when a slab of finite thermal conductivity is 
present between a constant-temperature surface and the slab-porous boundary 
(Kimura & Pop 1992). This implies that the constant-flux condition may arise more 
frequently in real life than does the constant-temperature one: for example, in the 
electrochemical systems considered by Bark, Alavyoon & Dahlkild (1992) and 
Alavyoon (1992). It was first found by Bejan (1983) that when a constant heat flux is 
specified along the vertical boundaries of a tall rectangular cavity, the flow, unlike that 
for the constant-temperature case, has a strikingly simple structure : namely, thermal 
and velocity boundary layers of constant thickness, with core and boundary 
temperatures increasing linearly in the upward direction. 

Vasseur, Satish & Robillard (1987) and Sen, Vasseur & Robillard (1987) analysed 
unicellular natural convection in an inclined shallow porous layer when the two facing 
walls are subject to a constant flux (one for heating and the other for cooling). 
Focusing on the mid-portion of the layer, they were able to develop an analytical 
solution for the temperature and the streamfunction for an arbitrary angle of 
inclination with respect to gravitational acceleration. Two-dimensional numerical 
results were also presented to test the closed-form solutions; the validity of the 
analytical solution was thus verified. One of their main points of interest centres on the 
question as to whether unicellular convection is stable within a small angle of 
inclination from the horizontal position, since it is evident that a vertical temperature 
gradient may break up a unicellular flow into multiple cells. With regard to this 
question, they found numerically that unicellular flow is in fact stable at small angles 
of inclination, and that within a horizontal layer a unicellular flow may stably exist up 
to a finite supercritical Rayleigh number, despite the presence of a mechanism to drive 
the flow upward at any horizontal position. However, they did not comment explicitly 
on, nor investigate, the possible stability of unicellular convection in the horizontal 
layer. Therefore, it is not yet clear whether the unicellular flow is the only stable 
convective pattern in the supercritical state, if so up to what value of the Rayleigh 
number the unicellular flow can stably exist, and furthermore what alternative state 
eventually replaces the steady unicellular flow if the Rayleigh number exceeds the 
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second criticality. In other words, the question remains as to whether or not the 
surprisingly simple flow structure envisaged by Bejan (1983) for the side-heating 
problem in a vertical layer would also persist in a horizontal layer heated from below. 

Our general preconceptual view of convection in a shallow layer heated from below 
is the formation of a number of convecting cells whose width is roughly that of the 
layer height. Stable unicellular convection in a shallow layer may drastically alter this 
picture of convecting patterns. At this point it would be worth mentioning that in one 
particular case, that of a shallow horizontal layer subjected to an inclined temperature 
gradient (Weber 1974), a unicellular flow does in fact exist. Nield (1991) has recently 
made a stability analysis of this problem for a more general parametric range which 
reveals several different bifurcations from the fully developed counter-flow, depending 
upon the ratio between the horizontal and vertical temperature gradients; the present 
analysis will show that such bifurcations may in fact be realized as a consequence of 
a much simpler boundary condition, namely heating and cooling with a constant flux. 
The proposed system involves fewer parameters, and is thus more amenable to the 
study of momentum and heat transfer characteristics. This paper will seek to 
demonstrate the existence of a unicellular flow when the layer is heated and cooled by 
constant fluxes, and to identify a possible criticality beyond which a steady state no 
longer exists, the transition from steady to oscillatory state occurring in the same 
manner as for constant-temperature boundary conditions. 

In what follows, we first define a physical model and present a mathematical 
formulation to describe the problem in $2. In $3, we consider first the linear stability 
of the conductive state for arbitrary aspect ratio, and then derive an analytical solution 
for the flow and temperature fields, which is valid in a fully developed flow regime for 
infinite aspect ratio. Subsequently, a normal mode linear stability analysis, both in two 
and three dimensions, is conducted in order to demonstrate and to enforce our 
argument that unicellular convection can exist at a finite supercritical Rayleigh number 
for infinite aspect ratio. In $4 we integrate the full governing equations numerically to 
see the effect of finite aspect ratio. Finally, concluding remarks are made in $ 5 .  

2. Mathematical formulation 
Before we describe our mathematical formulation, the basic assumptions underlying 

the present work are reviewed. First we assume that the solid matrix is homogeneous, 
isotropic and non-deformable with respect to the saturating fluid. The flow in a porous 
medium is described by a linear Darcy law; the Darcy number is small, so that the 
inertia terms can be neglected. The magnitude of the velocity is small and the solid 
matrix and the fluid are in thermal equilibrium. The relative temperatures across the 
layer are also small so that the Boussinesq approximation is valid. 

We consider a shallow cavity as shown in figure 1 ; the aspect ratio A = W / H ,  where 
W is the width of the cavity and H is the height, is assumed to be large but finite, 
although the cavity is assumed to be of infinite extent in the z-direction. The space is 
filled with a porous matrix of porosity #, permeability K and thermal capacity (pC), ,  
and saturated by a fluid whose kinematic viscosity, thermal expansion coefficient and 
thermal capacity are v, #I and (pC),  respectively. It is assumed that the fluid-saturated 
porous medium is characterized by an effective thermal conductivity k,, an effective 
thermal capacity (pC), defined by $( pC), + (1 - 4) (pC),, and a thermal diffusivity a 
defined by kJ( pC),. 

The top and bottom horizontal boundaries are subject to constant heat fluxes, 
which, respectively, cool and heat at the same rate. The two sidewalls are thermally 
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Z 

= O  

FIGURE 1. Physical model and coordinate system for a horizontal rectangular cavity 
heated from below by a constant flux. 

insulated and all boundaries are taken to be impermeable to the saturating fluid. Upon 
invoking the Boussinesq approximation and the linear Darcy law, the non-dimensional 
equations for the convective flow are 

w - q  = 0, 

Vp+q-RaTj = 0, 

aT/ati-q*WT-V’T= 0,  

where q is the velocity vector, j is the unit vector in the vertical direction, T is the 
temperature and p is the pressure. In addition, the non-dimensionalization has been 
performed in accordance with 

thermal 

and the 

with K 

where Q” is a constant heat flux specified along the horizontal boundaries, y is the 
capacity ratio of the porous medium defined by 

g b K Q H 2  
Ra = 

auk, ’ 

as the permeability of the porous medium. The boundary conditions are 
written as 

u = O ,  aT /ax=O on x = f A / 2 ,  

u = O ,  aT/ay=--I on y=O, l ,  

where the components of q are (u, v, w). 

3. Theoretical considerations 
3.1. Onset of convection 

We consider first the criticality condition for the onset of convection; this has been 
derived already for infinite aspect ratio by Nield (1968), and so we consider the finite 
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case. Since Squire’s theorem holds, for linear stability it is sufficient to consider just 
(x ,  y)-disturbances on the base state 

u, = u, = wo = 0, (8) 
T, = -Y, (9) 

po  = -+Ray2; (10) 
writing (u, 0) = (uo, 0 0 )  + ( W 7  Y, 0, S ( X ,  Y, t)), 

T = G(Y) + f i x ,  y, 9, 
P = P O k  Y )  +a<x, Y ,  0, 

and assuming that the perturbation quantities (those with carets) are small, we 
substitute into equations (1 )-(3), linearize by neglecting products qf small quantities, 
cross-differentiate to eliminate $ and introduce a streamfunction $ given by 

ti = a$/ay7 6 = -a$/ax, 

to obtain v2& = - Ra a Flax, (1 1) 

ai?/at-a&lax = v2F, (12) 

$ = o ,  aF/ax = o on x = + A / ~ ,  (1 3) 
$ = o ,  aF/ay=o on y=0,1 .  (14) 

subject to the homogeneous boundary conditions 

Taking normal mode expansions which satisfy (13), that is 

where rn is a strictly positive integer and m is a complex number, we substitute into (1 1) 
and (12), which may then be combined to give 

F”” - ( g + - 2 ~ 7 ~ )  F+- m;l( a + 7 -  m2n2 
A 

subject to (14), which becomes 

mana 
F(0) = 0, P ( 0 )  = -F(O), A2 

man2 
A2 F(1) = 0, F”’(1) = -F’( l ) .  

To determine the eigenmodes, we set m = 0 for neutral stability and note that if eiay 
satisfies (15), where a is real, then so will eby, provided 

2m2n2 112 

b=(T+a2) . 
Thence we are led to consider the eigenfunctions 

cosh(Ak,s+2m2x2/A2)1’2(y-3 - c o ~ A ~ , ~ ( y - ; )  
%(’) = cosh &I;, + 2m2x2/A2)112 cos ;Arn, ’ 
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FIGURE 2. Eigensolutions for the perturbation streamfunction and temperature for 
(a) the (1, Al, mode, (b) the (1, ,ul, mode. 

which satisfy (15)-(17) provided that Am, ,, and ,urn, f l  satisfy, respectively, 
(A2 + 2m2n2/A2)112 tanh+(h2 + 2m2~2/A2)1 /2  = h tan& 

(p2 + 2m2~2/A2)1/2~~th!j(,u2 + 2m2~2/A2) ' /2  = -,uCOt~,u. 
(20) 
(21) 

Eigenmodes will therefore arise when the Rayleigh number satisfies 

which is similar to Sutton's (1970) result for the onset of convection in a porous 
medium between horizontal isothermal boundaries, except that the wavenumber in y 
is now, in general, non-integral and dependent on the wavenumber in x and the aspect 
ratio. For the present flow, the neutral stability curves possess geometrical similarity, 
arising as a consequence of the slip boundary conditions, as in the isothermal case; that 

(23) 
is, 

so that a unicellular flow in a cavity of aspect ratio A will be identical to one of the cells 
in the rn-cellular flow in cavity of aspect ratio mA, provided that the Rayleigh numbers 
are the same. 

In order to determine the critical Rayleigh number (Ra,,) for onset, we consider the 
solutions to (20) and (21). For all values of m and A, equation (20) has a unique 
solution, Am, on each of the intervals ((2n - 2) n, (2n - 1) n), for n = 1,2,  . . . ; similarly 
equation (21) has a unique solution, ,urn,n, on each of the intervals ((2n-l)n,2nn), 
from which it is clear that Am, ,, < ,urn, ,, for all values of m, n and A, so that by equation 
(22) it will be one of the (m, rather than (m,,um,,,), modes which destabilizes the 
pure conductive state. Physically, this implies that a flow with m cells in the horizontal 
direction and 2n- 1 cells in the vertical, corresponding to the (my Am, ,,) mode, 
destabilizes the conductive state ahead of a flow with m horizontal cells but 2n vertical 
cells, corresponding to the (m,,urnan) mode. In figures 2(a) and 2(b) we show the 

Ram, n(mA) = Ra,, n(A), 
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FIGURE 3. Critical Rayleigh number for the onset of convection for the leading eigenmodes as a 
function of aspect ratio. 

eigenfunctions for the streamfunction (on the left) and the temperature (on the right), 
respectively corresponding to the (1, A,, ,)-mode, for which A,, , x 2.276 and 
Ra,, x 22.946, and the (l,p,,,)-mode, for which pl,, x 5.002 and Racr x 123.309, for 
the case A = 1. Furthermore, by the properties of the functions in (20), it is evident that 
for all n and A, A,, < A,,,, n,  in addition to which, since Am, < Am, %+,, we note that 
criticality will be determined by the modes involving n = 1.  

We plot in figure 3 the critical Rayleigh number against the aspect ratio for several 
of the leading modes, from which it is clear that (1, Al,  ,) remains the destabilizing mode 
for all values of A,  ahead of the other (m, A,, modes (m 2 2), and that the ordering 
of these modes, in the sense that < Ra,,,,,, is preserved as A increases; in 
particular, we also note that as A + 00, the limiting value of Racr = 12 (Nield 1968) is 
approached monotonically. The results are therefore in contrast to the case for 
isothermal boundary conditions, where not only does the destabilizing mode change as 
the aspect ratio increases, but the behaviour of the critical Rayleigh number is non- 
monotonic with increasing aspect ratio (Riley & Winters 1989). For constant-flux 
boundary conditions, therefore, unicellular flow remains a stable convective mode for 
all values of A ,  whilst for the isothermal case unicellular flow is ruled out on the 
grounds of instability for A > 4 2 ;  this goes some way towards explaining why 
unicellular, rather than multicellular, flows were observed in the computations of this 
paper. 

For the moment, as a precursor to those computations, we consider the flow for 
infinite aspect ratio for Ra in excess of 12. 

3.2. Solution for fully developed two-dimensional counterflow 
As given by Bejan (1983) for a vertical cavity, and later adopted by Vasseur et al. (1987) 
and Sen et al. (1987) for inclined cases, one may assume the existence of a two- 
dimensional fully developed counterflow, which may be a good approximation for the 
mid-region of the horizontally extended space provided that unicellular convection is 
stable. For the temperature, the following form may be assumed: 

w, Y )  = sx + W),  (24) 
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where S is a constant representing the temperature gradient in the horizontal direction 
and 9 is the variation in the vertical direction. Since the flow is fully developed, the 
velocity in the x-direction is a function of y only, and there is no velocity in the y- 
direction, so that 

Substituting the above expressions for the temperature and velocity into the governing 
equations (2) and (3), cross-differentiating to eliminate the pressure, integrating and 
using boundary condition (7) only, it is straightforward to derive the solutions for U 
and 9 as 

(26) U( y) = :Ra S( 1 - 2y), 

9( y) = tRa S2(;y2 - i y 3  -A) - y  +A. 
The constant S appearing in the above solutions can be obtained by imposing a 
constraint that the enthalpy flux at a vertical cross-section at any horizontal position 
must be zero (Bejan 1983), that is 

l ( u T - g ) d y  = 0. 

Together with equations (26) and (27), this yields an expression for S in terms of Ra: 

In the following, we take the positive sign for S, so that the flow is anticlockwise in 
orientation; the negative sign leads to clockwise flow, with otherwise identical results. 
Equations (26) and (27) and the expressions for S constitute the flow and temperature 
solutions when a fully developed flow in a horizontal cavity is assumed; the solution 
is the same as that obtained by Sen et al. (1987) as a special case for more general fully 
developed counterflow with arbitrary inclination to the direction of gravitational 
acceleration. Our primary concern, however, is whether or not this unicellular solution 
can stably exist at an arbitrarily high Rayleigh number and, if not, what kind of 
transition from the unicellular convecting flow may be expected at criticality. It is 
worth mentioning that the flow and temperature solutions obtained from equations 
(26x28) are qualitatively similar to those with horizontal and vertical temperature 
gradients (Weber 1974; Nield 1991). However, the present problem involves only a 
single parameter, the Rayleigh number based on flux strength, whereas that studied by 
Weber (1974) and Nield (199 1) has two independent parameters : the Rayleigh numbers 
based on the vertical and horizontal temperature gradients. 

A physically important quantity in heat transfer processes is the Nusselt number 
Nu, which is defined by the ratio of the actual heat flux to the transferred heat if 
conduction were the sole mechanism driving heat flow. By this definition, Nu is written 
as 

1 =- Q 
k,( T: - T,*)/H 

NU = 
- T, ’ 

where the subscripts I and u indicate the lower and upper boundaries respectively. Since 
the upper and lower boundary temperature may in general vary along the x-axis, it 
should be remembered that the aforementioned analytical solution will cease to be 
valid in the extreme end regions. 
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where i is the unit vector in the x-direction, and once again assuming that the 
perturbation quantities are small, we substitute into equations (1H3) and linearize to 
obtain 

v-q = 0 ,  

V i + q " - R a i j  = 0,  (32) 
a i l a t  + u a i p x  + 68' + sti - v2i = 0, (33) 

where the prime denotes differentiation with respect to y, and the components of the 
perturbation velocity 4 are (ti, 6, G) .  Now we make a normal mode expansion by letting 

(ti, 6, G, 8, b) = (tl( y ) ,  B( y ) ,  fi( y )  & y ) ,  jj( y ) )  ed+i(kz+lr), 
and substitute into equations (31H33). Eliminating tl(y), f i (y)  and p"(y) and writing 

a' = k2 + P, 
we obtain the ordinary differential equations 

B" - a% + Ra 2 8  = 0, (34) 
e"-(a2+ikU+cr)8-(iSk/cc2)B'-B8' = 0. (35) 

Equations (34) and (35) are subject to the boundary conditions 

v " = O  at y = O  and 1, 
& = O  at y = O  and 1, 

(36) 
(37) 

so that equations (34)-(37) constitute an eigenvalue problem for Ra. 
In general, an analytical solution to the above equations is not possible, and so 

numerical means are necessary. At least two methods are possible: either a direct 
solution of the equations using Runge-Kutta and shooting techniques or using a 
Galerkin expansion, which is the method we indicate here. Writing the expansions for 
v" and 6 as 

N 

B( y )  = z A,, sin nny, 

B(y) = B , c o s ~ ~ ~ ,  

n-1 

N-1 

n=o 

(38) 

(39) 

respectively, where the forms for equations (38) and (39) have been chosen in order to 
satisfy (36) and (37), and N is the truncation level, we then substitute into (34) and (35) 
and re-expand sine terms and powers of y using a cosine series. Equation (34) then 
reduces to the N equations 

where 

N 

Bm-l = z Tmn A,, m = 1,  ..., N, 
n-1 

2 n(k2+n2n2)(1+(-l)n+m) if ~~ 

n2 - (m - 1)2 

1 (k2+n2n2)(1-(-1)") Tmn = 
if m = 1.  n Ra k2 n 
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where 

Amn = 

P m n  = 

and 

N N 

pmn Bn-l -aBm-, = C. A,, A,, m = 1 , .  . . , N, 
n=l n=l 

if m = l ,  

C2ikRa S,, - (k2 + (m - 1)27c2 +iik Ra S if m 3 2, 

- 1  
if n=m-1 [ 2(n+m-l)x 

(- l)n+mn 
otherwise, I (n2 - (m - 1 ) 2 )  n 

Pmn = 

if m = l ,  

I - 1  
2(n+m- l ) n  

(- l)n+mn 
x(n2 - (m - 1)') - 

if n = m - 1  

otherwise, 

= 
2n(n2 + 3(m- 1)')(( - l),+, + 1 )  

(n2 - (m - 1)2)3 

i f  n = m - 1  

+(-l),+")n otherwise, 
n(n2 - (m - 1 ) 2 )  

S m n  = ((-1>n+m+ l>((m- 1)2+n2) 
n2((m - 1)2 - n2)' 

(" 
and S,, denotes the Kronecker delta given by 

1 if n = m  
0 otherwise. Smn = 

if n = m - 1  

otherwise, 

Thence on inverting the matrix Tmn in equation (40) we obtain 
N 

Am = C. T i ;  Bn-l, m = 1 ,... , N, 
n-1 

which, on substituting into (41) gives 

[U-a/Ib = 0, 

where the elements, Urn,, of the matrix U are given by 
N 

urn, = p m n -  X Am* Ty:, 
j-1 

(42) 

(43) 

/is the identity matrix and b = (Bo, B,, . . . , BN-l)T.  Equation (43) was solved using the 
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FIGURE 4. Critical Rayleigh number for the destabilization of fully developed flow against the x- 
wavenumber (k) for different values of the z-wavenumber ( I ) .  

N kcr Rae, fm 

30 4.834 502.68 22.09 
60 4.828 505.21 22.11 
90 4.826 505.69 22.11 
03 4.825 506.07 22.11 

TABLE 1 .  Effect of truncation level, N ,  on determining critical instability for Galerkin method 

NAG routine F02AJF for various values of Ra, k and I in order to determine the 
exponential growth rate, cr. In addition, the truncation level, N, was varied and the 
results checked against those obtained by solving equations (34)-(37) directly using 
Runge-Kutta and shooting methods. In order to determine the critical Rayleigh 
number for the onset of instability, the values of k and I were fixed and the value of 
Ra for which Re(a) = 0 was determined using a bisection method; in general, of 
course, for a particular value of Ra, there will be N solutions for cr, but it is evident that 
the relevant one here is that with maximal real part. This procedure was carried out for a 
suite of values of k and I, and the combination of k and I which gave the lowest value 
for Racr was deemed to provide the critical wavenumbers, k,, and lc,, in the x- and 
z-directions, respectively, with Racr thence obviously the critical Rayleigh number. 

In the first instance, two-dimensional disturbances, corresponding to I = 0, were 
considered. It was found that the base velocity and temperature profiles are stable for 
values of Ra less than 506, at which point an instability via a Hopf bifurcation, as 
evidenced by a critical eigenvalue with zero real part, i.e. Re(a) = 0, and non-zero 
imaginary part (Im(a)), sets in; the quantity Im(cr)/2n is in fact the critical oscillation 
frequency, f,,. In table 1 we show the results obtained for N = 30, 60 and 90, and 
compare these with those obtained by solving the differential equations; evidently, as 
N is increased, the results coincide with those of the Runge-Kutta method, as one 
would wish. Subsequently, three-dimensional disturbances were considered, with the 
value of 1 being gradually increased from zero; figure 4 illustrates the trends that were 
observed, and in particular how the two-dimensional Hopf bifurcation (on the line 
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I = 0) fits into the three-dimensional analysis. For 1 > 0, the stability analysis indicates 
that the counterflow will be destabilized not by a Hopf bifurcation, but by an exchange 
of stability for which k = 0. In particular, as 1 decreases, so does Ra,, on k = 0 (the 
curve for which I = 1 would also show a steep jump near k = 0 in the manner of the 
curves 1 = 2,3,5 had we computed it for smaller values of k).  For values of k within 
the region of steep ascent, exchange of stability occurs; for greater values of k,  there 
is a Hopf bifurcation for which IIm(v))l increases with k. As 1 is increased from zero, 
Racr and k, for the Hopf bifurcation are found to decrease until 1 x 2.725, 
corresponding to Racr x 464.32 with k,, x 2.12; thereafter, there is no local minimum 
for Ra, so that, for example, Ra for the 1 = 3 and 1 = 5 curves decreases monotonically 
with k to attain its minimum value at k = 0. From figure 4, since it is clear that 
criticality occurs at k = 0, we are led to consider disturbances in the z-direction only. 

The governing equations now simplify to 

iY-l2i7+Ral28 = 0, (44) 

& - ( 1 2 + C r ) S - i w =  0, (45) 

subject to the boundary conditions (36) and (37). The numerical solution used for 
determining the values of Ra at k = 0 indicates that the value of Ra,, increases 
monotonically with l( > 0), so that the critical wavenumber is therefore 1 = 0. In this 
case, we are actually able to determine the critical Rayleigh number analytically, as 
follows. Writing C, 8, Ra and g as expansions in 1 2 ,  so that 

D = i70++2v",+14v"4++.. ,  

S = So + lag2  + 14& + . . . , 

= g 0 + 1 2 a 2 + 1 4 g 4 + . . . ,  

Ra = Ra0+l2Ra,+l4Ra,+ ..., 

we substitute into equations (44) and (45) to obtain, at 0(l0) ,  
I 

C0 = 0, 8, = constant 

(which may be taken to be 1 without loss of generality) and a, = 0; evidently, 1 = 0 is 
a critical value, although higher orders of 1 need to be considered in order to determine 
the nature of the criticality and the corresponding Rayleigh number. 

At 0(12), the governing equations are 

with 6, and D, subject to the boundary conditions (36) and (37), and where #(y)  has 
been expanded in 12, according to 

v =  e;+iZe;+ ..., 

with 

Thence, 
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which, on inserting into (47) and integrating over [0,1] gives Q, = 0; it is therefore 
necessary to go to 0(14), although we need first to observe that 

12 y4 y5 yo y3 y4 
6,(y) = -+- 5 1-- 

y2 2 2  ""( ( Ra)(E-a+%)-a+E)+c' 
where C is a constant whose value ultimately will not need to be determined. 

At 0(14), the governing equations are 

E i  - E ,  + Ra, 8, + Ra, 8, = 0, 

ei- c4 6,- e, -0, e; -fiZ e; -c4 6; = 0, 
(48) 

(49) 
- - -  

whereupon we obtain, on integrating the first of these twice and applying the boundary 
conditions, 

where 

Integrating (49) over [0,1] and applying the boundary conditions for &, we find that 
integrals involving Ra,, C and D cancel, leaving just the relation 

for criticality, we set cr4 = 0, and solve to obtain the roots for Ra, as 

Ra, = 56 f 4 4408  1, 

the positive one of which, approximately Ra,, x 311.53, is the physically relevant one. 
Furthermore, if we set Ra, slightly greater than this value in equation (50), we find that 
c4 is real and positive, indicating an exchange of stability. Since this critical Rayleigh 
number is much lower than any of those for the Hopf bifurcations obtained earlier 
when k =+ 0, we conclude that the counterflow will in fact be destabilized by 
longitudinal, rather than transverse, disturbances; this would appear to be in line with 
the results of Nield (1991) for a Hadley-type cell in which the temperature, rather than 
the temperature gradient, is prescribed at y = 0 , l .  

The above analysis for a region of infinite extent in the z-direction may be added to 
by considering the case where the porous medium is confined to lie between the planes 
z = 0 and z = z,, across which there is no heat or fluid flow; in this case the normal 
mode expansion is written as 

(fi, $9 B,a> = (m), v"(y>, B'(y),P"(y)) ed+ikz cos (mffzlz,), 
+ij = @(y)  ed+"= sin (mnz/z,,), 

and the governing equations are still (44) and (49, except with 1 now replaced by mn/z, 
and m integral. To find Ra,,, it is clear that we should take m = 1, and so we plot the 
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FIGURE 5. Critical Rayleigh number against aspect ratio in the z-direction (23.  

dependence of Racr on z,, in figure 5 ; as one might expect, RUE, increases as zo decreases, 
which gives rise to the possibility that for sufficiently small zo the two-dimensional 
Hopf bifurcation discussed earlier may set in in advance of the exchange of stability. 
From figure 5, Ra w 506 corresponds to z, w 1.5 x a bound on the aspect ratio, 
zo, that is possibly difficult to realize experimentally. 

Furnished with a linear stability analysis to indicate the nature of the flow as Ra is 
increased, we proceed to a numerical solution of the full two-dimensional equations for 
the case of finite aspect ratio, for which the results for the Hopf bifurcation at Ra z 506 
will be the most relevant. 

4. Numerical analysis 
4.1. Numerical procedure 

Introducing a streamfunction, 9, and rewriting the governing equations ( lH3)  in the 
form 

V2$ = - RaaT/ax, (51) 

we discretize (51) and (52) using Patankar's (1980) control-volume method. The aspect 
ratio of the rectangular computational domain was taken to be A = 2,4 8 and 10; as 
an example of the meshes used for the computation, the domain was covered by a grid 
of 19 x 101 points for A = 4 and 19 x 201 for A = 8. The code was validated by 
generating a unicellular counterflow and comparing the results with those of the 
analytical solutions derived in the previous sect.ion. It was found that the velocity was 
rather insensitive to grid refinement. On the other hand, the temperature field was 
found to be extremely sensitive to computational resolution : for example, the relative 
difference between the numerical velocity profile in y ,  when a relatively coarse 15 x 51 
grid was used, and the analytical distribution at x = 0 for Ra = 400 was found to be 
within 5 YO, whilst the numerically predicted Nusselt number was around 10 % lower 
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Numerical results at x = 0 

Analytical Nu 

Ra Nu @max 

100 3.750 3.708 
200 4.615 5.420 
400 5.217 7.786 
500 5.357 8.732 
600 5.455 9.585 
700 5.526 10.368 

15x51 19x101 21x101 

3.379 3.544 4.544 
4.089 4.367 4.366 
4.578 4.946 4.957 
4.695 5.086 5.101 
4.778 5.188 5.207 
4.843 5.266 5.288 

15 x 51 

3.824 
5.572 
7.979 
8.934 
9.787 

10.564 

@ma, 

19 x 101 
3.756 
5.467 
7.828 
8.764 
9.600 

10.360 
TABLE 2. Effect of grid size on numerical accuracy ( A  = 4) 

21 x 101 
3.739 
5.447 
7.796 
8.729 
9.562 

10.320 

than that given by the analytical solution. Subsequently, it was found that adequate 
agreement for Nu could only be obtained if the grid consisted of at least 19 points in 
the y-direction and at least 101 in the x-direction. Numerical accuracy was also found 
to be sensitive not only to grid resolution in the vertical direction, particularly near the 
top and bottom boundaries, but also in the horizontal; for instance, a grid containing 
19 points in the y-coordinate and 51 in the x-coordinate for aspect ratio 4 failed to 
improve upon, relative to the 15 x 51 mesh, the value of the Nusselt number at x = 0, 
and it required at least 101 grid points in the x-direction as well in order to reduce the 
relative difference to the order of 5 YO. The overall effect of grid resolution on numerical 
accuracy is collated in table 2. We note that in order to avoid any bias towards 
preferred convection patterns, we used uniform grid spacing in the x-direction; for the 
y-coordinate, on the other hand, non-uniform spacing was allowed. Near the 
horizontal boundaries, typically the grid spacing was 0.006 in y and 0.04 in x .  

The Poisson equation for the streamfunction was solved using a vectorized version 
of the SOR method, which essentially relies on a sweeping process in a diagonal 
direction over the grid network which permits the use of renewed values line by line at 
each iteration. The energy equation was integrated explicitly in time; a typical 
integration time step for computations employing 19 grid points in the y-coordinate 
was At = 2.5 x 
For a few cases, the time step was halved in order to verify that the solution did not 
depend on Ar. The convergence of SOR was determined by the following criterion: 

whilst for 21 grid points the time step was reduced to At = 1 x 

where B was taken as lo-', K and L are the number of mesh points in the x- and y- 
directions respectively, and n is the iteration number. A similar criterion was used for 
qj to judge whether steady state had been reached. All computations were carried out 
in double precision using a Titan engineering work station, equipped with a vector 
processor. 

4.2. Numerical results for unicellular steady convection 
From equation (28), it is clear that the analytical solution for fully developed flow is 
possible only when Ra is greater than 12. This critical value agrees with Nield's (1968) 
result concerning the criticality for the onset of convection from a conducting steady 
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FIGURE 6. Time-dependent velocity and temperature-field evolution towards unicellular convection 

(A0 = 0.2,A@ = 1); (d) t = 107.5 (A@ = 0.25,A@ = 1); (e) t = 157.5 (A0 = OS,A@ = 0.5). 
( R ~ = 1 0 0 , A = 1 0 ) :  (a) t=2 .5  (AO=O.l,A@=l); (b) t = 7 . 5  (A0=0,1,A@=l);  (c) t = 5 7 . 5  

state. For finite aspect ratio, our numerical results show that the conductive state is 
stable when the Rayleigh number is smaller than 12, so that perturbations imposed on 
the conducting solution always decay as the time integration progresses. Computations 
carried out for Ra in excess of 12 were found to agree with (22); for instance, for 
Ru = 20, A = 10, the numerical solution evolves towards a convective steady state, as 
one would expect for Ru > Raw (in this case, Ra,, = 12.1 1). Figure 6 is typical of the 
transient development of the velocity and temperature fields from zero initial 
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FIGURE 7. Variation of single-cell solution with Rayleigh number: (a) Ru = 65 (A0 = 0.5, A$ = 0.25); 
(b) Ra = 150 (A0 = 0 . 5 , A ~  = 0.5); (c) Ru = 400 (A0 = 0.2,A$ = 2); (d )  Ru = 600 (A0 = 0.2, 
A+ = 2). 

conditions; we mention in passing that for this and subsequent computations, no 
artificial disturbance was introduced, so that convection essentially evolved from 
numerical noise. When the value of the Rayleigh number is increased, there are initially 
a number of convecting cells whose horizontal dimension has roughly the same order 
of magnitude as the height of the cavity. These convecting cells gradually merge 
together to form horizontally elongated cells, and eventually a single cell. The time 
taken for the attainment of a steady state is found to be independent of Ra if the initial 
conditions are taken to be zero everywhere, but dependent instead on the geometrical 
aspect ratio; for instance, if A = 8, the dimensionless time required to reach a steady 
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FIGURE 8. Comparison of analytical solutions for the fully developed regime with numerical 
results at x = 0 for small Rayleigh number: (a) 0, (b) U. 

state is 130, whereas if A = 4, this value is approximately halved. This is the same order 
of magnitude in time as it takes for heat to diffuse horizontally over the entire space. 

In figure 6, it should be noted that during the transient process the flow evolves in 
a centro-symmetric manner. It is also seen that there exists a linear horizontal 
temperature gradient over the cavity, on which local temperature variations due to 
individual convecting cells are superposed. The Nusselt number during the transient 
state is on average lower than at steady state; this is observed by dint of the fact that 
the isotherms are less closely spaced at steady state. Furthermore, the convecting 
velocity at x = 0 becomes greatest at steady state. Unicellular convection at steady 
state (figure 6e) exhibits a linear horizontal temperature gradient over the space 
superposed by a nonlinear vertical temperature variation that is independent of the 
x-coordinate, and is such that the greatest part consists of a fully developed 
counterflow, except for the narrow end regions where the velocity field is turned 
around. All the properties of the numerically computed temperature and flow fields at 
steady state support the assumptions made earlier for deriving the analytical solution. 
Figure 7 indicates a series of unicellular convection patterns at steady state for four 
different values of Ra. No qualitative differences can be observed among the four as 
regards the flow structure, with both temperature and velocity fields keeping their basic 
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FIGURE 9. Comparison of analytical solutions for the fully developed regime with numerical 
results at x = 0 for large Rayleigh number: (a) 0, (b) U .  

structure regardless of Ra; quantitatively, fluid velocity increases appreciably with Ra, 
although the change in temperature is not so marked. However, both the difference 
between the top and bottom boundary temperatures and the horizontal temperature 
gradient decrease with increasing Ra, and the vertical temperature variation becomes 
increasingly nonlinear with Ra. 

4.3. Comparison with the analytical solution 
In this section, we compare extensively the numerical solutions with the analytical 
solutions developed in $3.1. Figure 8 shows the numerical and analytical results for 
relatively low Rayleigh numbers. Regarding the vertical temperature variation B(y), it 
is easy to show from equations (27) and (28) that B(y) has an inflection point at y = 0.5 
when the Rayleigh number is greater than 60. This is seen in figure 8(a) ;  at Ra = 25, 
the temperature decreases monotonically with y, whereas for Ra = 65 there is a region 
near y = 0.5 where the temperature undergoes inflection. This behaviour is reproduced 
exactly by the full numerical results. The analytical results for 8(y)  for low Rayleigh 
numbers (Ra = 25,65 and 100) agree well with the full numerical solutions. According 
to equation (26), the velocity U(y)  is linear, and so is the corresponding numerical 
solution. In figure 9, we show the comparisons for higher Rayleigh numbers, Ra = 200 
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FIGURE 10. Analytical solution for (a) Nusselt number, (b) and (c)  S, as functions of the 
Rayleigh number, compared with numerical results at x = 0. 

and 500; the inflection point for 8(y )  at y = 0.5 becomes more evident (figure 9a). The 
linear velocity profiles, in general, display good agreement with the numerical ones. 

The Nusselt number variation with Rayleigh number is shown in figure lO(a); in 
general, the numerical solutions tend to underestimate the value for Nu at x = 0 that 
is predicted analytically. The differences between the two, however, are about 5 YO, and 
do not vary much with Ra. These differences may in part be due to the finite horizontal 
extent of the domain used for numerical computation. In figure lo@) the maximum 
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FIGURE 11.  Horizontal temperature variation at the mid-height of the cavity compared with 
numerical results at x = 0. 

values of the streamfunction (the values of $(O, 0.5) in the numerical results) are shown 
as a function of Ru. Again the analytical and numerical results agree well over a wide 
range of the Rayleigh number. It is found that the value of is less sensitive to grid 
refinement than the value of Nu in the numerical calculation; poor resolution in the 
numerical computation always leads to smaller values of Nu, but larger values for 
$,,,, a trend easily observed in table 2. 

Another physical quantity of interest is the horizontal temperature gradient S 
defined by (24). From (28), S decreases as Ra-''' for large values of Ra; this trend is 
evident in figure lO(c), wherein the numerical solutions at x = 0 are also plotted 
together with the results of (28), and indicate favourable agreement. In addition, figure 
11 shows the horizontal temperature variation at the mid-height of the cavity for three 
different values of Ra; it is perhaps rather surprising to see that the linear temperature 
profile in the x-direction persists even near the left and right end regions. 

4.4. Bifurcation from steady unicellular to oscillatory convection 
As predicted by the stability analysis of 43.3 for infinite aspect ratio, when the Rayleigh 
number is increased unicellular steady convection eventually becomes unstable. Two- 
dimensional linear stability analysis applied to the analytical solution for the fully 
developed regime indicates a critical Rayleigh number just in excess of 506, and that 
transition occurs via a Hopf bifurcation with onset oscillation frequency&, = 22.1 in 
diffusion time. Numerical computations indicate that the critical Rayleigh number 
depends on the geometric aspect ratio of the cavity, whose sidewalls ensure that 
unicellular flow is stable for values of Ra somewhat in excess of 506; in figure 12, for 
example, we show the isotherms and streamlines during a single period of oscillation 
at Ra = 650 for A = 8. In this series of plots we show the temporal deviations of the 
streamfunction and the temperature from their time-averaged mean values. It is seen 
that, along the horizontal walls, six or seven pairs of vortex-like flows are formed which 
subsequently move downstream with the main circulation. The pairs of vortices are 
obviously caused by periodic temperature variations at the horizontal walls. For the 
entire cavity, the spatial period is roughly 1.32 in dimensionless length, which compares 
well with the value 1.48 as determined by the critical wavenumber k,, at the onset of 
oscillation for the case A + 00, I = 0.  Furthermore, when such a pair of vortices 
impinges on the vertical sidewalls, and thereby changes its direction of motion, the flow 
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FIGURE 12(a-c). For caption see facing page. 

strength within the pair diminishes. As for the observed oscillation in Nusselt number, 
this is attributable to the horizontal movement of a pair of temperature disturbances 
of unequal strength, which are responsible for alternate small and large amplitudes in 
the course of a single period at a fixed x-location. 

The oscillatory flows obtained in the present numerical study were, for the most part, 
simply periodic for Ra smaller than 800 ; however, exceptions, where a small-amplitude 
oscillation with a higher harmonic frequency was superimposed onto the leading 
harmonic oscillation, were also observed. Such a case is shown in figure 13(a) which 
shows the Nusselt number variation in time and its spectral power curve near the onset 
of oscillation (Ra = 650, A = 8); the latter, consisting of peaks at f = 22.7 and its 
harmonics, quantifies the oscillation. Similarly the Nusselt number variation with time 
at Ra = 750 near the onset of oscillation for A = 4 and its spectral power curve are 
shown in figure 13 (b). The dependency of Rues on aspect ratio, evidently nonlinear, is 
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FIGURE 12. Temporal behaviour of the deviation of isotherms and streamlines from the time-averaged 
mean value of the single-cell solution at Ru = 650 during a single period of oscillation 
(A0 = 3.6 x A$ 1, $,,, z 10). The time interval between successive figures is At = 7.25 x 

further elaborated in figure 14(a). Although it proved difficult to pin down exactly the 
critical Rayleigh for a given aspect ratio, it was observed to lie between 630 and 650 
for A = 8, increasing to somewhere between 730 and 750 for A = 4. It would therefore 
seem plausible to suggest, in the absence of computations for higher aspect ratios, that 
Racr should approach the value 506 as the aspect ratio is increased. 

Similarly, as shown in figure 14(b), the frequency at the onset of oscillation depends 
on the aspect ratio ; furthermore, it is observed that the oscillation frequency increases 
with Rayleigh number, a trend which qualitatively agrees with the evolution of 
convection due to constant-temperature heating. In that case, a boundary-layer 
instability causes oscillatory flow, and a boundary-layer thinning process results in a 
frequency increase; in the present case, however, it is not so obvious from the isotherms 
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FIGURE 15. Time-averaged Nusselt number against Rayleigh number in an oscillatory regime. 

and the streamlines whether or not a boundary-layer instability is responsible for the 
onset of oscillation. Nonetheless, there is no doubt that there are two competing 
mechanisms : the horizontal temperature gradient that drives the counterflow, and a 
vertical temperature gradient, which has the potential to destabilize it. In fact, 
examining the analytical solution for the temperature, it is not difficult to show that 
the vertical temperature gradient in the distance between either the top or bottom 
boundary and the first elbow (for instance, see figure 9a), increases with Ra, whereas 
the horizontal temperature gradient decreases with Ra. In the present problem, 
therefore, the effect of the vertical temperature gradient eventually overshadows the 
horizontal gradient, and thus leads to instability. It should be noted that this is exactly 
the situation discussed by Weber (1974) and Nield (1991); the latter has also pointed 
out the possibility of an oscillatory instability when the vertical Rayleigh number 
becomes sufficiently large. Finally, we present in figure 15 the time-averaged Nusselt 
number as a function of Ra for two different aspect ratios; for these, the flow was 
unicellular for the values of Ra presented, and hence agreement with the analytical 
results for the fully developed flow is good. 

5. Conclusion 
An analytical and numerical study has been presented for the two-dimensional flow 

problem arising when a fluid-saturated porous cavity with a small aspect ratio (a 
shallow rectangle) is heated from below and cooled from above by a constant flux. It 
has been shown that a unicellular flow is stable up to a critical value of Ra, beyond 
which oscillatory convection sets in. Based on a fully developed counterflow 
assumption, an analytical solution for the velocity and temperature fields was 
developed, and the stability of this base solution was analysed. The linear stability 
analysis predicts that the base solution is stable to transverse disturbances up to 
Racr = 506.07, at which point there is a Hopf bifurcation with critical oscillation 
frequency f,, = 22.1 in diffusion time. The flow proves to be more unstable to 
longitudinal disturbances: an exchange of stability occurs for Racr m 31 1.53 and 
critical wavenumber zero. For the two-dimensional case, extensive numerical 
computations have been carried out in order to complement the analysis; the Rayleigh 
number range studied in the numerical computations was 25 < Ra < 1050, with aspect 
ratio A between 2 and 10. When steady unicellular convection exists, the simple 
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analytical solution predicts accurately the results of the full numerical solution ; the 
physical quantities compared between the two were the temperature and velocity 
profiles in the vertical direction and the temperature gradient in the horizontal 
direction, although the analytical solution was not strictly speaking valid at the 
extreme left and right end regions. 

The critical Rayleigh number for a Hopf bifurcation in the full numerical solutions 
shows some dependency on the cavity aspect ratio; for A = 4, the critical value for the 
onset of oscillation was around Ra = 740, whereas for A = 8 it was about Ra = 640. 
The oscillation frequency at criticality, f,,, was also found to depend on the aspect 
ratio, although the value for A = 8,&, = 22.7, agreed well with the result obtained by 
the stability analysis. 

Reiterating therefore, a fully developed counterflow can be induced when the top 
and bottom boundaries are subject to a constant-flux condition; this steady unicellular 
convective flow can exist for arbitrary aspect ratio up to a critical Rayleigh number 
which is slightly more than forty times greater than that for the onset of convection. 
This finding differs greatly from the flow observed when a shallow cavity is subject to 
constant-temperature heating from below, where multi-cellular convection is the 
preferred mode for aspect ratio in excess of 2/2. 

The authors would like to acknowledge the constructive criticisms made by the 
referees during the preparation of this paper. 
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